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Two formulas, based on analytical considerations, which are capable of predicting 
the wedge angle of transition from Mach to regular reflection over cylindrical concave 
wedges, are developed. They are derived using Hornung, Oertel & Sandeman’s (1979) 
conclusion that a Mach reflection can exist only if the corner-generated signals can 
catch up with the incident shock wave. The good agreement between the present 
models and the experimental results confirm Hornung et aZ.’s (1979) concept. The 
predictions of these models are in better agreement with experimental results than 
the predictions of Itoh, Okazaki & Itaya’s (1981) model. The present models are very 
simple to use and apply but, like Itoh et aZ.’s (1981) model, they also lack the ability 
to account for the dependence of the transition angle on the radius of curvature of 
the cylindrical wedge. 

1. Introduction 
The reflection of oblique shock waves is a nonlinear problem which has been 

investigated analytically and experimentally by many researchers. Results of 
investigations in the past decade indicate that the phenomenon can be divided into 
three categories, depending on whether the flow is steady, pseudo-steady or truly 
unsteady (Ben-Dor 1980; Ben-Dor & Glass 1979 and Ben-Dor, Takayama & 
Kawauchi 1980, respectively). The reflection phenomenon in truly unsteady flows has 
caught the attention of many investigators in recent years because of (1) the desire 
to understand more about the reflection of spherical shock waves which belong to 
the truly unsteady flow category, and (2) the fact that  actual transition can occur 
only in flows which are truly unsteady. 

Figure 1 illustrates three different types of truly unsteady reflections. In  figure 1 ( a )  
the reflection of a spherical shock wave is shown. When the blast wave first collides 
with the ground surface i t  experiences a head-on collision (0, = 90”) immediately 
followed by a regular reflection. As the blast wave propagates outwards it attenuates 
and the reflecting wedge angle 8, a t  the refleetion point decreases until the regular 
reflection goes through a transition to a Mach reflection (for very strong blast waves 
the sequence of events will be regular reflection + double-Mach reflection + complex- 
Mach reflection and, finally, single-Mach reflection). 

A similar situation is shown in figure 1 ( b ) .  Here a planar normally incident shock 
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FIGURE 1. Three differmt types of truly unsteady shock-wave reflection : (a) spherical-blast-wave 
reflection over a plane surface; (h)  planar-shock-wave reflection over a cylindrical convex wedge; 
and (c) planar-shock-wave reflection over a cylindrical concave wedge. For each case the wave 
configurations of both the regular reflection (RR) and the Mach reflection (MR) are illustrated 1. 
incident shock wave; R, reflected shock wave; M ,  Mach stem; T, triple point and Ow, reflectingwedge 
angle. 

wave, propagating from left to right, collides with a convex half-cylinder. Again, 
initially the shock wave experiences a head-on collision. As the shock wave propagates 
up the wedge, the reflecting wedge angle Ow at the reflection point decreases until 
the regular reflection goes through a transition to a Mach reflection. Unlike the 
previous case of a blast wave (figure l a ) ,  where both the incident-shock-wave Mach 
number and the reflecting wedge angle decrease as the blast wave propagates, here 
only the reflecting wedge angle decreases while the incident-shock-wave Nach number 
remains constant. 

An opposite transition process is shown in figure 1 ( c ) .  Here the planar normally 
incident shock wave, propagating from left to right, collides with a concave 
half-cylinder. Initially, the shock wave is reflected as a Mach reflection. However. 
as the shock wave propagates up the wedge the reflecting wedgc angle 8, increases. 
to result in transition to regular reflection. As in figure 1 (b )  the inc.ident-shock-\~ave 
Mach number remains constant while thc reflecting wedge angle changes. 
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FIGURE 2. Transition from MR to RR and from RR to MR in the (6, &)-plane, experimental results 
and some theoretical transition lines. 6 is the inverse pressure rat,io across the incident shock wave; 
Ow is the wedge angle; 0, RR-+MR transition over convex cylinders (figure l b ) ;  0, MR+RR 
transition over concave cylinders (figure I c ) .  Line A ,  the ‘detachment’ criterion of von Neumann 
(1963) ; B ,  the ‘mechanical-equilibrium ’ criterion of Henderson & Lozzi (1975) ; C, Heilig’s (1969) 
RR+MR transition over convex cylinders; D ,  Itoh, Okazaki & Itaya’s (1981) RR+MR transition 
over convex wedges; E ,  Itoh, Okazaki & Itaya’s (1981) MR+RR transition over concave wedges. 

Incident-shock-wave Mach number, M, 

Heilig (1969) was probably the first to study the reflection of a planar shock wave 
over cylindrical (figure 1 b )  and elliptical convex wedges. The measured transition 
wedge angles obtained in his study are shown in figure 2 (circles). Ben-Dor et al. (1980) 
confirmed Heilig’s experimental results using a more accurate measuring technique, 
namely streak photography with curved slits (for dctails see Ben-Dor & Takayama 
1981). Their experimental study was extended to include the reflection of a planar 
shock wave over a cylindrical concave wedge (figure l c ) .  The measured transition 
wedge angles for this case are shown by squares in figure 2. It is clearly seen that 
the RR-tMR transition over a convex cylinder occurs a t  wedge angles which are 
significantly smaller than those appropriate to the MR-tRR transition over a 
concave cylinder. Following this study Takayama & Ben-Dor (1984) proposed a 
possible hysteresis loop for the RR 

Soon after Ben-Dor et aZ.’s (1980) results were published, a new study along the 
same line of investigation by Itoh et al. (1981) was reported. They repeated the 
experimental study of Ben-Dor et al. (1980) and added a numerical analysis. Using 
Milton’s (1975) modification of Whitham’s (1957) theory, they numerically calculated 
the transition wedge angle for the RR+MK. transition over a cylindrical convex 
wedge and for the MR-tRR transition over a cylindrical concave wedge. Thew 
numerical transition curves are shown in figure 2 as curves D and E ,  respectively. 
Curve C in figure 2 was numerically calculated by Heilig (1969), who applied 
Whitham’s (1957) classical theory. A comparison between curves C’ and L) and thc 
experimental results (open circles) indicates that Milton‘s ( 1975) modification of 

MR transition phenomenon. 
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Whitham’s theory does improve the agreement between the numerical predictions 
and the experimental results. 

The other two curves in figure 2, A and B ,  respectively represent the ‘detachment ’ 
criterion of von Neumann (1963), which is the R R e M R  transition criterion in 
pseudo-steady flows, and the ‘mechanical equilibrium ’ criterion of Henderson & Lozzi 
(1975), which is the R R  + MR transition criterion in steady flows. The difference in 
the transition criterion between steady and pseudo-steady flows was explained 
physically by Hornung et al. (1979). 

Aside from the fact that the numerical transition curves (C, D and E in figure 2) 
fail to  predict accurately the actual transition wedge angles, they pose some 
additional difficulties: (1) the numerical procedure involved in calculating each curve 
is quite complex; (2) the numerical transition curves fail to account for the radius 
of curvature of the cylindrical wedges; and (3) the numerical transition curves fail 
to account for the angle of incidence of the cylindrical wedges. 

The dependence of the transition wedge angle on the radius of curvature of the 
wedge was studied by Takayama & Sasaki (1983) and Dewey et al. (1983) for both 
convex and concave cylindrical wedges. Itoh & Itaya (1981) investigated the effect 
of the angle of incidence of a cylindrical concave wedge on the transition wedge angle. 

These studies indicated that, as the angle of incidence and/or the radius of 
curvature of a cylindrical concave wedge are increased, the actual transition wedge 
angles decrease and approach the values predicted by the ‘ mechanical-equilibrium ’ 
transition line (the squares in figure 2 approach curve B ) .  On the other hand, in the 
case of a cylindrical convex wedge, an increase in the radius of curvature causes an 
increase in the actual transition wedge angle, which approaches the ‘detachment’ 
transition line (the circles in figure 2 approach curve A ) .  Note that when R+ 00 both 
the concave and convex cylindrical wedges approach (from a geometrical point of 
view) the case of a straight wedge. 

In  the following, two expressions, based on analytical concepts, for predicting the 
MR-+ R R  transition wedge angles over cylindrical concave wedges are developed. 
Furthermore, it will be shown that the criteria developed here fit well with the so-called 
‘general criterion ’ for the R R  $ MR transition in steady, pseudo-steady and truly 
unsteady flows, which was first suggested by Hornung et al. (1979). 

2. Present analysis 
The aim of the present analysis is to  obtain the MR + R R  transition line of a planar 

shock wave over a cylindrical concave wedge by applying Hornung et al.’s (1979) 
‘corner-signal ’ concept. This suggested that, for a Mach reflection to exist, the corner 
signals generated a t  the tip of the reflecting wedge must catch up with the incident 
shock wave. This concept implies that, if the corner-generated signals cannot catch 
up with the incident shock wave, then a Mach reflection cannot exist. Instead the 
reflection will be regular. This is due to  the fact that  a regular reflection is a type 
of reflection which can be isolated from the tip of the wedge in the sense that it does 
not need to know about the existence of the tip of the wedge where the reflection 
actually started. Hornung et al. (1979) proved this concept to  be valid for both steady 
and pseudo-steady shock-wave reflections. In the case of a pseudo-steady reflection 
they clearly showed that transition from regular to  Mach reflection can occur only 
after the corner-generated signals catch up with the incident shock wave (at the 
reflection point). If, however, the corner-generated signals cannot catch up with the 
reflection point a Mach reflection is unobtainable. 
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FIGURE 3. Schematic illustration of a Mach reflection over a cylindrical concave wedge. 

When a planar-incident shock wave encounters a cylindrical concave wedge it 
initially reflects as a Mach reflection. A schematic drawing of such a Mach reflection 
is shown in figure 3. The information about the disturbance caused by the wedge is 
limited to the area bounded by the Mach stem m and the reflected shock wave r ,  i.e. 
regions (2) and ( 3 ) .  Following Hornung et al. (1979) one must conclude that, since 
the initial reflection is a Mach reflection, the corner signals, which were generated 
at the instant when the incident shock wave collided with the tip of the wedge, were 
able to catch up with the incident shock wave i (at the triple point T). 

The path along which the corner-generated signals propagate on their way to catch 
up with the triple point is unknown. It is only known that the corner-generated 
signals are moving with speed u + a, where u is the flow velocity and a the local speed 
of sound, and that when they catch up with the incident shock wave they are 
swallowed by i t ,  i.e. they stop moving with speed u + a  and start moving with the 
shock speed. The actual path along which the corner-generated signals propagate can 
be along any line connecting the tip of the wedge, point 0, and the triple point T, 
provided the line passes through subsonic-flow regions. 

As the incident shock wave propagates over the cylindrical concave wedge, the 
Mach reflection terminates to form a regular reflection. Following Hornung et al. 
(1979) i t  can be assumed that the termination of the Mach reflection occurs at the 
point where i t  becomes impossible for the corner-generated signals to  catch up with 
the incident shock wave. 

Figure 4 illustrates a regular reflection exactly at the point where the MR+RR 
transition occurred. At earlier times (or positions) a Mach reflection (similar to  the 
one shown schematically in figure 3 and actually in figure 5a)  existed. The 
corner-generated signals were able to  catch up with the incident shock wave of this 
Mach reflection, be swallowed by it and continue to propagate with it. However, since 
the concave wedge is becoming more and more steep as the incident shock wave 
continues to  propagate, the corner-generated signals are losing in their race to catch 
up with the incident shock wave, and eventually they fall back behind it. 
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Incident shock 1 r 

FIGURE 4. A Mach reflection over a concave cylinder exactly at transition: 0, tip of the wedge; 
T, triple point; R,  radius of curvature of the wedge; 82, transition wedge angle; x*, distance 
travelled by the incident shock wave from the tip of the wedge to the point where transition 
occurred. 

At times (or positions) beyond the situation shown in figure 4 (which corresponds 
to the position where the MR -+ RR transition occurs), the corner-generated signals 
are no longer able to catch up with the incident shock wave, and hence a Mach 
reflection becomes impossible. The actual reflection which is obtained after the 
termination of the Mach reflection (shown in figure 5 a )  is shown in figure 5 b .  The 
incident shock wave is clearly seen to reflect regularly from the wedge. The reflected 
shock wave extends backwards and forms a new triple point. A short shock wave 
which emanates from this triple point terminates perpendicularly on the wedge 
surface. The flow bounded by the reflected shock wave, the wedge surface and the 
short normal shock wave is supersonic. Consequently, the short normal shock wave 
actually indicates the exact position to which the corner-generated signals have 
propagated. The corner-generated signals cannot precede this normal shock wave ; 
they are swallowed by it and continue to  propagate with its velocity. Thus, the 
reflection point of the regular reflection (as well as the incident shock wave) is isolated 
from the corner-generated signals by a supersonic flow region. The corner signals 
generated at the tip of the wedge (point 0) are moving with a velocity u+a. In  
general, the value of u + a changes inside the flow field. If At is the time for the incident 
shock wave to travel from x = 0 to x*, where x* is the point where the corner-generated 
signals had caught up with the triple point T, then the corner signals have propagated 
during this time a distance of 

S = JOAt ( u + a )  dt. (1) 
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(b)  

FLGURE 5. Direct shadowgraphs of reflection over cylindrical concave wedges: (a) Mach 
reflection; ( b )  regular reflection. Incident-shock-wave Mach number M ,  = 1.48; initial 
pressure Po = 1.667 x lo4 Pascal; initial temperature = 292 K ;  radius of curvature ll = 50 mm. 
The test gas is dry air. 
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FIQURE 6. Isopycnics of a Mach reflection in dry air over a concave cylinder: M ,  = 1.57; 
Po = 1.667 x lo4 Pascal; = 295 K ;  R = 50 mm. The numbers indicate density ratios with respect 
to the density ahead of the incident shock wave. 

Since the variation of u+a in the flow field is unknown, the right-hand side of ( 1 )  
is unsolvable. However, inspecting a typical Mach reflection over a concave wedge 
(figure 5a)  indicates that  as the reflected shock approaches the surface (point Q ,  
figure 3) i t  becomes very weak. This in turn implies that  the flow properties do not 
change significantly while passing through the reflected shock wave at  point Q 
(figure 3). Thus they can be assumed to maintain their pre-shock values (i.e. their 
values behind the incident shock) and we can assume that 

u+a = u,+a,, (2) 

where u1 and a, are the flow velocity and the local speed of sound behind the incident 
shock wave, respectively. I n  order to  further justify this assumption, the isopycnics 
corresponding to  a Mach reflection over a concave wedge are shown in figure 6. The 
numbers indicate density ratios with respect to the density ahead of the incident 
shock wave. It can be seen clearly that the density changes along the wedge from 
about 2.1 (which is the value behind the incident shock wave) to  a value of about 
3.0 behind the Mach stem, thus suggesting that the changes inside the flow field are 
not too large. 

Once the assumption of (2) is used, the integration of (1) can be carried out, to 
result in S = (u,+a,)At. 

Unfortunately, the exact path of propagation of the corner-generated signals is also 
unknown. Consequently the value of S in (3) is itself unknown. 

I n  the following, two possible propagation paths will be examined. The first is along 
the straight line connecting the tip of the wedge 0 and the triple point T ,  i.e. line 
OT. The second path is along the slipstream s on either side of it. Both of these lines 

(3) 
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are shown in figure 3, as (a)  and ( b ) ,  respectively. It should be noted again that the 
actual line need not be any of these lines. It can be any line connecting points 0 and 
T ,  e.g. line ( c )  in figure 3. 

3. Propagation path along either side of the slipstream - (model A) 
Let us assume that the corner signals propagate from the tip of the wedge (point 0) 

to the triple point T along the slipstream on either side of i t  (dashed line in figure 3). 
As a first approximation we assume that tAe length of this propagation path is 
very close to the length of the circular arc 02. Inspecting a photograph of a Mach 
reflection over a concave wedge such as the one shown in figure 5 ( a )  indicates that 
the Mach stem is quite short compared with the radius of curvature of the wedge, 
and hence the above approximation is quite good. Furthermore the Mach stem, which 
is perpendicular to the cylindrical wedge surface, coincides with the radius of 
curvature, and therefore one can write 

s = Re,, (4) 

where R is the wedge radius of curvature. 
Inserting (4) into (3) results in 

ROW = (u, +a,) At. (5) 

If, however, the instant of transition is considered, i.e. if At = x*/us, where x* is the 
x-coordinate where transition occurs (i.e. the point beyond which the corner-generated 
signals cannot catch up with the incident shock wave i) then (5 )  should be replaced 

X* 
Re; = (u,+a,)-, us 

where 0; is the wedge angle at the point where transition occurs. 

X* = R sine:. (7) 
From figure 3 

Combining (4), (6) and (7) results in 

Dividing both the numerator and the denominator on the right-hand side by the local 
speed of sound a, of the flow ahead of the incident shock wave finally results in 

where M ,  is the incident-shock-wave Mach number, U,, = ul/ao and A,, = al/ao. 
Note that, for moderate shock-wave Mach numbers, U,, and A,, are functions of the 
incident-shock-wave Mach number only through the following relations : 

and 
A,, =--[*(ME-l) y-1 1 

y + l M ,  y-1 

where y is the specific-heat ratio, i.e. y = 
a monatomic perfect gas. 

for a diatomic perfect gas and y = 5 for 
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4. Propagation path along the straight line OT - (model B )  
This time we assume that the corner-generated signals propagate along the shortest 

path connecting the tip of the wedge (point 0) and the triple point T .  Again we assume 
as a first approximation that the length of this propagation path is very close to the 
length of the line connecting points 0 and G, i.e. - (figure 3). This assumption 
can be again justified by the fact that the length of the Mach stem A (of a Mach 
reflection over a cylindrical concave wedge) is very short compared with the radius 
of curvature R,  i.e. A 4 R. 

The foregoing assumptions, together with the fact that thc Mach stem coincides 
with the radius of curvature, imply 

(12) $3 = R sin few. 
Inserting S from (12) into (3), and then replacing t by $*/us, results in 

Again, we non-dimensionalize the right-hand side by the local speed of sound ahead 
of the incident shock wave to obtain 

I n  summary, (9) and (14) together with (10) and (11) provide two different 
expressions of the form 0; = 8;(Ms) by which the transition wedge angle 0; can be 
calculated for a given incident-shock-wave Mach number M,. While developing these 
two expressions it was assumed that the speed of propagation of the corner-generated 
signals remains constant inside the flow field, (2). This assumption enabled us to 
integrate (1) to obtain (3). In  order to carry the present analysis further, the distance 
S (equation (3)) passed by the corner-generated signals, was expressed using two 
simple geometrical expressions, which finally enabled us to obtain two simple 
expressions ((9) and (14)) by which the transition wedge angle 0; can be calculated. 

Note that (3) requires a value for S. However, there is no need to know the exact 
path of the corner-generated signals. For example, while replacing S by Re,, (4) in 
the first model, it was not stated that the corner-generated signals propagated along 
the wedge surface but only that the length of the propagation path could be 
approximated by Re,. For example, it is possible that they propagated along the 
path labelled (c) (in figure 3) which has a length close to Re,. 

5. Results and discussion 
The transition lines predicted by the present two simple models A and B are shown 

in figure 7 as curves A and B respectively. Recall that curve A was calculated by 
(9) and curve B by (14). Curve C in figure 7 is the transition line as obtained by Itoh 
et al. (1981) using Milton's (1975) modification of Whitham's (1957) theory. In the 
following, each of these two models will be discussed separately. 

5.1. Model A 

The agreement between the experimental results and the transition line predicted by 
this model (9) is quite good in the range 1.1 < M ,  < 4.0. (The upper limit arises from 
the lack of experimental results with which the model can be compared.) In the range 
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FIGURE 7. Transition from MR+ RR over concave cylinders. Circles indicate our experimental 
measurements for R = 40 mm and 50 mm wedges (the initial wedge angle e0, = 0 for both models). 
Line A,  the transition as predicted by our model A (equation (9)); B, the transition as predicted 
by our model B (equation (14)); C,  the transition as predicted by Itoh et d ’ s  (1981) model which 
was based on Milton’s (1975) modification of Whitham’s (1957) theory; D the transition in 
pseudo-steady flow, i.e. the detachment criterion. 

1.25 < M ,  < 2 ,  curves A and C overlap, i.e. the transition line arising from model A 
predicts the same transition wedge angles as predicted by Itoh et al.’s (1981) 
numerical study. Both transition lines ( A  and C) predict higher transition wedge 
angles than the actual ones. As the incident-shock-wave Mach number increases 
beyond M ,  = 2, curve C of Itoh et al. (1981) shifts away from the experimental results 
to  predict higher values, while the prediction of the transition line of model A (9) 
continues to follow the data points with the same accuracy as for the lower Mach 
numbers. Thus one can conclude that the analytical transition line predicted by model 
A is in general better than Itoh et al.’s (1981) numerical transition line in the range 
M ,  > 1 .l. I n  the region Ms < 1.1 the predictions of the transition line arising from 
model A are very poor. 

5.2.  Model B 
The agreement between the experimental results and the transition line predicted by 
this model (14) is good only in the range 1 < M ,  < 1.1. For M ,  > 1.1, model B predicts 
transition angles which are greater than the actual transition wedge angles by 
1Oo-15O. It is possible that the reason that the predictions of model B are better a t  
low Mach numbers and those of model A at higher Mach numbers lies in the nature 
of region ( 2 )  (see figure 3). It is known (Ben-Dor 1979) that, as the Mach number of 
the incident shock wave increases, the Mach number of the flow in region (2) 
increases until i t  becomes supersonic. Thus it is possible that the corner-generated 
signals propagate a t  low incident-shock-wave Mach numbers from 0 to T along a path 
in region ( 2 )  which is subsonic. As the Mach number of the incident shock wave 
increases, the Mach number in region (2) becomes higher and i t  is possible that the 



376 G. Ben-Dor and K .  Takayama 

corner-generated signals prefer now a propagation path in region (3) which is always 
subsonic. 

It is our belief that the lack of very good agreement between the predicted and 
the actual transition wedge angles is due to the fact that  our models are over-simplified 
compared with the real phenomenon. Nonetheless, the agreement is surprisingly good. 
In  order to get a better agreement one must know the exact distribution of u + a in 
the entire flow field and .the exact path along which the corner-generated signals 
propagate from point 0 to the triple point T (figure 3). This would probably require 
a solution of the conservation equations governing the flow field a t  hand which is 
two-dimensional and truly unsteady. Such a solution is extremely difficult. Fortun- 
ately, our simplifying assumptions (2) have proven themselves successful. In  
reality u+a in the flow field a t  hand is somewhat greater than u,+a,. Thus, the 
corner-generated signals propagate faster and catch up with the reflection point 
earlier, resulting in smaller transition wedge angles than those predicted by our 
models A and B. The experimental transition angles which are lower than the 
predicted ones (figure 7)  indicate that this indeed should be the case. 

6. The influence of the initial angle of incidence - 00, 
Figure 8 illustrates a cylindrical concave wedge which, unlike the one analysed 

previously, has an initial angle 0; (note in the previous case 00, = 0). The procedure 
involved in developing (9) can be repeated to  lead to 

Three transition lines corresponding to 0; = 0, 10" and 20" are drawn in figure 9, 
together with the experimental results of Itoh & Itaya (1979). The experimental 
results indicate that, the greater the initial wedge angle 6;, the smaller is the value 
of the transition wedge angle 0:. Increasing 00, from 0 to 20" causes a general decrease 
of about 8" in 0;. 

The transition lines as predicted by model A exhibit the same trend. However, the 
agreement between the transition line for a given value of 0; becomes poorer and 
poorer as 0; increases. While the experimental results corresponding to 0; = 0 
are about 2"-3" away from the appropriate transition line, those corresponding 
to 0; = 10" lie about 5'4" above their transition line and those corresponding to 
0; = 20" are in general more than 8" away from their transition line. The reason for 
the fact that, the higher 00, is, the worse is the agreement between theory and 
experiments, is probably due to the assumption that u+a is constant and equal to 
u1 + a,. When 6; > 0, the reflected shock wave cannot be assumed anymore to be weak 
a t  point Q (figure 3). Thus, u+a > u,+a,. It should be noted that one might still 
assume for this case that u + a = constant, but not that  u + a = u1 +a, as assumed 
in (2). Finally, it is of interest to note that the expression arising from model B, (14), 
can also be modified to  account for 0;. Repeating the procedure with model B and 

(16) 
0; + 0 results in 

MS sin Og-sin 0; - 
sin +(Of - 0;) 

- 2  
U,, + A,, ' 

Owing to the poor agreement between the transition line as predicted by model B 
at M ,  > 1.1 and the fact that there are no experimental results for 00, =+ 0 at M ,  < 1.1, 
the transition lines arising from (16) for 0; =I= 0 are not drawn. However, calculations 
for 0; = 10" and 20" indicate that for this case too 0; decreases as 00, increases. 
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FIQURE 9. Comparison of the transition lines as predicted by model A for 0; = 0, 10" and 20" 
with the experimental results of Itoh & I taya (1979). 

FIGURE 8. Schematic illustration of a Mach reflection over a cylindrical concave wedge exactly at 
transition: 0, tip of the wedge; T, triple point; R, radius of curvature of the wedge; O;, transition 
wedge angle; Ok, initial wedge angle; x*, distance travelled by the incident shock wave from the 
tip of the wedge to the point where transition occurred. 
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FIGURE 10. Schematic illustration of (a) a regular reflection over a cylindrical convex wedge, 
and (b) a Mach reflection over a cylindrical convex wedge. 

7. Cylindrical convex wedge 
When a planar shock wave collides with a cylindrical convex wedge it initially 

reflects as a regular reflection (figure 10a). As the incident shock wave propagates 
up the reflecting wedge, the regular reflection terminates and becomes a Mach 
reflection (figure lob). 

It is our belief that the race between the corner-generated signals and the incident 
shock wave is the dominant factor in this transition phenomenon too. Unfortunately, 
however, this case is much more difficult than that of a reflection over a cylindrical 
concave wedge. This is due to the fact that for this case the flow at  point 2 
(figure 10a) passes through the portion of the reflected shock wave which was reflected 
head-on from the wedge. Consequently, the changes in the flow properties across this 
portion of the reflected shock wave cannot be neglected. Thus the assumption that 
u + a = u1 +a, in region 2 (figure 10a) is not valid and should not be made. As a matter 
of fact u +a % u, + a,. Instead u + a as a function of 8 must be known if one is to carry 
out an integration of the form f (u+a)  dt. To the best of our knowledge such data 
is unavailable. 
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8. Conclusions 
Two formulas for predicting the wedge angle for transition from Mach to regular 

reflection over cylindrical concave wedges have been developed. Both are based on 
Hornung et al.’s (1979) conclusion that a Mach reflection can exist only if the corner 
signals generated at the tip of the wedge can catch up with the incident shock wave. 

When the predictions of the two models were compared with the available 
experimental results it was found that one of them is appropriate in the range 
1 < M ,  < 1 . 1 ,  while the other is in good agreement with the experimental results in 
the range M ,  > 1.1 .  The predicted transition angles of these two  formulas are in better 
agreement with the available experimental results than the one existing transition 
line of Itoh et al. (1981). While the model of Itoh et al. is based on Milton’s (1975) 
modification of Whitham’s (1957) theory, and hence is quite complicated to use, the 
present analysis results in two simple formulas which are very easy to apply. 

An attempt was made to modify the developed transition formula to include the 
effect of the initial wedge angle. Although the modification shifted the transition line 
in the correct direction i t  failed to reproduce accurately enough the experimental 
results, probably due to the assumption, which for this situation is too crude, that  
the changes in the flow properties are negligible when it passes through the reflected 
shock wave. 

Some limitation of the present model arising from the simplifying assumptions have 
been pointed out. I n  particular, the case of the reflection over a cylindrical convex 
wedge was considered. It is our belief that  the present method should, in principle, 
be valid also for cylindrical convex wedges. However for that case the incident shock 
collides head-on with the wedge a t  its tip, resulting in a strong reflected shock wave 
across which the assumption given by (2) is invalid. Alternatively, the exact 
distribution of u+a must be known. 

As a final remark, it should be stressed that the present analytical transition 
formulas failed to account for the radius of curvature of the cylindrical wedge which 
is known to have an influence on the transition wedge angle. 
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